当前位置: 首 页 > 自然语言处理 >

自然语言处理中的注意力机制是干什么的?

来源:量子位 发布日期:2017-05-15

王小新 编译自Quora 量子位 出品 | 公众号 QbitAI 谈神经网络中注意力机制的论文和博客都不少,但很多人还是不知道从哪看起。于是,在国外问答网站Quora上就有了...

王小新 编译自Quora

量子位 出品 | 公众号 QbitAI

谈神经网络中注意力机制的论文和博客都不少,但很多人还是不知道从哪看起。于是,在国外问答网站Quora上就有了这个问题:如何在自然语言处理中引入注意力机制?

Quora自家负责NLP和ML的技术主管Nikhil Dandekar做出了一个简要的回答:

概括地说,在神经网络实现预测任务时,引入注意力机制能使训练重点集中在输入数据的相关部分,忽略无关部分。

注意力是指人的心理活动指向和集中于某种事物的能力。比如说,你将很长的一句话人工从一种语言翻译到另一种语言,在任何时候,你最关注的都是当时正在翻译的词或短语,与它在句子中的位置无关。在神经网络中引入注意力机制,就让它也学会了人类这种做法。

注意力机制最经常被用于序列转换(Seq-to-Seq)模型中。如果不引入注意力机制,模型只能以单个隐藏状态单元,如下图中的S,去捕获整个输入序列的本质信息。这种方法在实际应用中效果很差,而且输入序列越长,这个问题就越糟糕。

图1:仅用单个S单元连接的序列转换模型

注意力机制在解码器(Decoder)运行的每个阶段中,通过回顾输入序列,来增强该模型效果。解码器的输出不仅取决于解码器最终的状态单元,还取决于所有输入状态的加权组合。

图2:引入注意力机制的序列转换模型

注意力机制的引入增加了网络结构的复杂性,其作为标准训练模型时的一部分,通过反向传播进行学习。这在网络中添加模块就能实现,不需要定义函数等操作。

下图的例子,是将英语翻译成法语。在输出翻译的过程中,你可以看到该网络“注意”到输入序列的不同部分。

图3:翻译网络示意图

由于英语和法语语序比较一致,从网络示意图可以看出,除了在把短语“European Economic Zone(欧洲经济区)”翻译成法语“zone économique européenne”时,网络线有部分交叉,在大多数时,解码器都是按照顺序来“注意”单词的。

文中配图来自Distill

上一篇:从短句到长文,微软研究院如何教计算机学习阅读理解?
下一篇:脸书提全新CNN机器翻译:准确度超谷歌还快九倍

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

相关文章
  • 干货 | DIY一个聊天机器人,一共分几步?

    干货 | DIY一个聊天机器人,一共分几步?

  • 人工智能,“奇点时刻”是否临近

    人工智能,“奇点时刻”是否临近

  • 入选最受关注AI公司的Kitt.AI:多轮对话聊天

    入选最受关注AI公司的Kitt.AI:多轮对话聊天

  • ICML论文 | Facebook分享机器学习研究开源平

    ICML论文 | Facebook分享机器学习研究开源平